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l. The Bayesian Brain

The Bayesian Brain hypothesis is based on the idea that the brain is a statistical ‘inference
machine’ that actively generates and updates hypotheses about the causes of its sensory
input - the states of the world. These hypotheses take the form of internal models or
representations of the world, which the brain uses to predictincoming sensory data. In this
framework, perception is viewed as a process of hypothesis testing, where the brain uses its
current model of the world to predict sensory input, then updates this model based on the
discrepancy (prediction error) between the predicted and actual sensory data according to
Bayes theorem below. Bayes' theorem is a fundamental principle in the field of probability
theory and statistics that describes how to update the probabilities of hypotheses (in this
case, beliefs or models of the world) when given evidence.

The theorem can be expressed as follows:
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Where;

P(H|E) is the posterior probability, or the probability of hypothesis H being true given
the evidence E.

P(E[H) is the likelihood, or the probability of the evidence given that the hypothesis is
true.

P(H) is the prior probability, or the initial degree of belief in H.
P(E) is the probability of the evidence.



The Bayesian brain at work is shown in this figure below (where E = sensory observations ‘o’,
and H =inferred states ‘s’).
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Adapted from Oleg Solopchuk, 2018

Each term in Bayes' theorem (the prior, likelihood, and posterior) can be understood as a
probability distribution, not just a discrete probability. Each distribution hasits own mean and
variance, which represent the average value and variance/uncertainty (or inverse
variance/precision). So prediction error that drives the updating of internal beliefs is a
function of both the difference between the prior model prediction and the sensory data
(given the prediction), as well as the confidence level (precision) of the prediction and the
signal to noise ratio (precision) of the sensory evidence.

These ideas are shown in the figure.
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Il. The Free Energy Principle (FEP)

The Free Energy Principle, first formulated by the British neuroscientist Karl Friston, extends
the Bayesian Brain account in the following ways.

1. Free Energy (F): Prediction Error & Complexity-Simplicity Tradeoff

In traditional Bayesian accounts, the updating of beliefs (i.e., our internal models of the
world) is based on the prediction error weighted by the level of confidence or certainty we
have in our predictions and sensory data. The FEP maintains this principle, but claims that
we strive to minimise free energy (F) - a quantity thatis a function of both prediction error and
the complexity of our internal generative model. (‘Generative’ in the sense of generating
predictions about the sensory data we expect to encounter.)

Free energy is a measure of surprise or improbability of observed states in the world given our
internal model of the causes of those states, and is minimised when the prediction error is low
and the model is simple. The FEP Bayesian brain tries to achieve a balance between
maintaining a model that is complex enough to accurately predict sensory data, while also
adopting Occam’s razor and being as simple as possible, which helps with efficiency. Simpler
models conserve computational resources. They require less information to be stored and
processed, allowing us to process information more efficiently. This is crucial given the brain's
constraints in terms of energy usage and processing capacity.

2. Free Energy Formula

The formula for free energy (F) is:
F=-log P(D|M) + D[Q(B]D, M) || P(8]D, M)]

The first term is the surprise/improbability of the sensory data (D) given the model (M). The
more surprise, the more free energy. The second term is the ‘KL divergence’ which quantifies
the dissimilarity or divergence between two probability distributions - Q(6|D, M) and P(8|D, M).
(8 typically represents the model parameters.) The more the divergence, the more the free
energy (F).



Q(8|D, M) is the approximated posterior, representing our beliefs about the parameters 6 of
the model M given the data D. This is our updated belief about the state of the world
(parameters) after receiving the sensory data. P(6|D, M) is the true posterior, representing
what the beliefs about the parameters 6 should be if calculated exactly given the data D and
the model M. This is generally intractable to compute exactly, which is why we have the
approximation Q. The KL divergence term D[Q(6|D, M) || P(6|D, M)] thus measures how much
our beliefs Q deviate from the true posterior P. This can be seen as a complexity cost: the more
complex our model (i.e., the more parameters it has, the more detailed its representation of
the world), the more potential there is for the approximate posterior Q to deviate from the
true posterior P, resulting in a higher KL divergence.

Sothe Free Energy Principle captures Occam's razor by penalising models that are more
complex than necessary to explain the data.

3. Free Energy (F) & Model Evidence

In Bayesian inference, when there is more evidence supporting a particular belief or
hypothesis, the confidence - and thus precision - in that belief increases. Asthe weight of
evidence increases, the model's predictions become more certain and less variable.
This extends to minimising free energy. According to the Free Energy Principle, an agent
should select models and beliefs that minimise its free energy. As a model's evidence
increases, the precision of its predictions increases, and thus its free energy decreases.

The relationship between free energy and model evidence is deeply embedded in the
mathematics of the FEP and the Bayesian framework upon which it's built. The formula for
free energy (F) is:

F=-log P(D|M) + KL divergence term

Model evidence is denoted as P(D|M) where D is data and M is a model. This is the probability
of observing the data given a particular model and quantifies how well the model predicts the
data, giving a measure of the model's fit or explanatory power. High model evidence means
that the model predicts the data well.



~Log(P(x))

ICI.EIIIE.JLIIICI.EIIIEBI 1.0
Plot of -Log(P(x))

Asyou can see, as the probability P(x) approaches 0, the value of -log(P(x)) increases sharply.
Conversely, as the probability P(x) approaches 1, the value of —log(P(x)) approaches 0.

Free energy (F) is a functional that sets an upper limit on the negative log of the model
evidence -log P(D|M). That is, the value of the free energy is always greater than or equal to
the negative log of the model evidence - F = -log P(D|M).

Functionals take functions asinputs (rather than numbers) and return numbers as outputs. In
this case the function takes probability distributions of the model and data as inputs, and F
can be understood as a ‘summary statistic’ of the approximated posterior P(DIM) or model
evidence. F sets an upper limit on the negative log of this model evidence -log P(D|M). This
simply means that the value of the free energy is always greater than or equal to the negative
log of the model evidence, since the ‘divergence’ term’ (see above) is always added to P(DIM).

Based on the formula, as evidence isincreased, Fis decreased. And if free energy is minimised
where F=1ogP(DIM), this implies that model evidence is maximised, since we are minimising
the negative log of the evidence. And generally, whenever ...



4. Active Inference

The FEP extends the Bayesian Brain hypothesis by proposing that we not only update our
beliefsin response to sensory input to reduce prediction error, but engage proactively with
our environment to gain more information to reduce uncertainty and bring about states to
conform with our predictions. The FEP puts agency and our ability to shape our worlds at
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Adapted from Sims & Pezzulo, 2021. The agent can change sensory states
through action to reduce free energy in ‘epistemic foraging’ or expected
free energy in enacting preferences and goal pursuit.

A. Expected Free Energy E(F): Pragmatic and Epistemic Active
Inference
While actual free energy refers to a current measure of prediction error, uncertainty

and model complexity, expected free energy E(F) concerns expectations about future
free energy.



A ‘policy’ refers to planned actions - a sequence of actions that an agent can take to
achieve a goal or realise a preference. E(F) is the future predicted surprise or
uncertainty that would result from a specific policy, given our current model of the
world. Itincorporates both the expected cost (the difference between expected and
preferred sensory outcomes) and the uncertainty about these outcomes.

Expected free energy is calculated for each potential policy that the agent could enact,
and the one with the lowest expected free energy is selected. We attempt to minimise
E(F) through a form of internal 'simulation’, where we mentally play out the possible
outcomes of different policies before selecting the one that is expected to minimise
free energy (F) the most. This means that the agent is choosing policies and actions
that it predicts will best reduce future uncertainty and surprise, effectively navigating
the balance between the agent's goals and the need to reduce uncertainty about the
world. The minimisation of expected free energy in this way leads to two types of
active inference:

Pragmatic active inference. This is directed at fulfilling preferences or goals (i.e.,
reducing the expected cost/prediction error). For example, if the goal is to find our
keys, we might select a policy that involves searching in areas where keys have been
found before, based on our working model of the situation. This reflects an
exploitation focused strategy - exploiting the current understanding we already have.

Epistemic active inference. This is aimed at reducing uncertainty and ambiguity. This
might involve a policy of exploration to gather more information, even if it doesn't
directly lead to the satisfaction of a specific goal or preference. For instance, we might
adopt a policy of exploring an unfamiliar environment in order to build a more
accurate and reliable model of that environment as we learn how to navigate it. Or we
may collect more information on a topic before making a decision about it. Thisis
called ‘epistemic foraging.’ It is an exploration focused strategy.

B. Goal State Directedness

In the formalism of the FEP, there is an inherent distinction between state and
inference. States are configurations of the system at a specific pointin time - for
example, posterior beliefs about the state of the world. Inference, on the other hand, is
the computational process through which the system updates its beliefs (i.e., changes
its state).



In terms of free energy (F) minimisation, we can reframe states as goal states. A goal
state (or "solution”) can be defined as a state of the system that minimises free energy.
In Bayesian terms, this state is a posterior belief about the state of the world, given the
sensory evidence, that is most likely according to the system's generative model.

Inference is the process of arriving at this goal state.

C. Precision Weighting in Goals and Preferences

Our preferences and goals, according to the FEP, are by definition those future states
we expect the most. Some anticipated future states are assigned higher precision, that
is, we have a higher degree of confidence or certainty in their occurrence compared to
others. These define our goals and preferences - the states we ‘value’ more.
Precision-weighting of different expected outcomes changes over time depending on
context. Multiple factors feed into precision-assignments at a given pointin time,
potentially including the following:

e Biological need. In the context of homeostasis, predictions about the
physiological needs of the body (like maintaining a certain body temperature,
or energy level) are likely to be assigned high precision, reflecting the central
value of these needs. When these needs are not met (or expected not to be
met), the body experiences a large prediction error (or expected prediction
error). This motivates policy selection to reduce this error such as getting
somewhere warm or finding food. In this case the precision of our expectations
of those states is hard-wired in our biology.

e Habit. Familiar or habitually experienced states and associated policies over
time gain high precision because they've been confirmed repeatedly in the past
and confidence in them occurring again is high. When these states are not
experienced there is a large prediction error (or expected prediction error),
which motivates policies to reduce this error by selecting policies that habit. In
this case the precision of our expectations of those states is based on the
accumulated evidence (sensory data) associated with those states.

e Learning and Experience: Related to habit-formation, as we gain more
knowledge and experience, the precision of our predictions concerning certain
states being attained can increase. This reflects the accumulation of evidencein
favour of these predictions.

e Emotional Relevance: States or outcomes that have strong emotional
relevance might be given higher precision. Forinstance, predictions tied to
outcomes associated with high reward/pleasure or high threat/pain will be



assigned high precision, reflecting their salience and importance to the
individual.

e Social Context: Culture and social learning and can influence precision
weighting. For example, beliefs or values imparted from parents, peers, or
society at large can be assigned higher precision due to their social importance.

e Attention: The direction of attention can also modulate precision. When we
pay more attention to certain stimuli, the brain often treats the predictions
associated with these stimuli as having a higher precision according to the FEP.
This is sometimes called ‘attentional gain’.

e Uncertainty and Variability: In situations with a high degree of uncertainty or
variability, the brain may decrease the precision weighting assigned to
predictions related to these situations. This allows the brain to be more flexible
and exploratory through epistemic active inference, allowing for learning and
updating of the internal model when new information is received. Here the
prioritised goal is ‘gaining more relevant information to reduce uncertainty’.

These examples show how precision-weighting plays a crucial role in defining and
prioritising our goals or preferences by influencing the confidence or certainty we have
in certain future states or outcomes. Higher precision-weighting leads to a higher
degree of confidence in a certain prediction, effectively determining how much we
value or 'care' about a prediction error related to that prediction.

D. Choice & Bayesian Decision-Making

The higher the precision-weighting of a predicted outcome, the more surprise we will
experience if the outcome does not occur and the stronger the motivation to
implement policies to reduce the resulting expected free energy.

Thereis a parallel between the inference process in selecting policiesin active
inference and belief selection in perceptual inference.
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Here the likelihood term P(Evidence|Policy) can be interpreted as the probability of
observing the sensory data (or states) conditional on what we would expectto seeasa
result of executing a certain policy - our planned sequence of actions.

By multiplying the prior (probability of a policy based on previous experience) with the
likelihood, we compute a posterior probability that represents the updated belief in
the efficacy of a policy given current evidence. In the same way that a mismatch
between predicted and actual sensory data drives perceptual updating in Bayesian
inference, a mismatch between the sensory outcomes we expect from a certain policy
and the sensory outcomes we actually experience can drive policy updating in active
inference. If a policy doesn't yield the expected sensory outcomes (i.e., doesn't get us
closer to our goal or result in the reward we expect), this can be thought of as a
prediction error - an indication that our current policy needs revision. By extension, if
we are using Bayes inference to evaluate between multiple policies, actions are
selected according to the policy that maximises the posterior belief (minimises free

energy).

As with Bayesian perceptual inference, precision-weighting of the policy (prior) and
likelihood (policy evidence) also plays a critical role in policy selection.

When selecting between possible courses of action, we take into account not only
which action is expected to bring us closest to our goal or goals, but also our
confidence in those policies. High precision policies for which we have accumulated a
lot of evidence will be selected over low-precision policies where there is more
uncertainty or variance in outcomes. And when the states we experience as a result of
our action plans are clear and unambiguous, we will give more weight to this evidence
in updating our policies. The balance between these two sources of precision
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weighting also influences the trade-off between exploitation (sticking with familiar,
reliable strategies and goals) and exploration (seeking out new information and
experiences to update both goals and strategies).

In summary, Bayesian inference is used as a model for both perception and action
according to the FEP, reflecting a deep symmetry between perception and action.

E. Time Horizons and Cost-Benefit Tradeoffs

Onthe FEP, our chosen policies to realise preferences and goals are ultimately
determined by expected free energy minimisation.

The expected free energy under a particular policy is calculated as a sum of the free
energy expected for each time step within the future planning horizon. When
evaluating policies, take into account the free energy associated with all future states
and actions predicted under that policy. So, the selection of policies is based on a full
trajectory of states and actions, and the aim is to minimise the total or cumulative free
energy across this trajectory. In this way, decisions are informed by considering the
longer-term consequences of chosen actions, not just the immediate outcomes.

This underpins short-term vs long-term cost-benefit tradeoffs. While policies that are
associated with a lower cost (time, effort, resource use, negative emotions) and risk
(harm, loss) for a valued goal are generally prioritised, often long-term expected free
energy reduction will be greater combined with short term costs or risks.

For example, in Walter Mischel’ classic Marshmallow Test, a child is given a choice:
they can have one marshmallow now, or if they can wait for 15 minutes they will be
given two marshmallows. The first policy is to eat the marshmallow now, which will
result in an immediate reward (sensory pleasure) and will minimise immediate
prediction error (the expected sensory pleasure of eating the marshmallow). The
second policy is to wait and get two marshmallows later, which involves delaying the
reward and enduring the cost (discomfort, frustration) of waiting.

The expected free energy for each policy is computed based on the sensory outcomes
associated with each action, as well as the predicted or preferred sensory states. For
the first policy, the expected free energy is low in the short term, because the sensory
prediction (pleasure from eating a marshmallow) matches the actual sensory
outcome. However, over the longer term, this policy may be associated with higher
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free energy, because the child would experience disappointment or regret from not
getting the second marshmallow.

On the other hand, the second policy (waiting) might be associated with higher
expected free energy in the short term, because of the prediction error associated with
not eating the marshmallow right away. However, over the longer term, this policy
might lead to lower free energy, as the child gets to enjoy two marshmallows and the
pleasure of achieving their goal.

According to the FEP, the child's decision would be guided by the policy that minimises
expected free energy over the planning horizon. If the child is able to anticipate the
future reward (and tolerate the immediate discomfort) they should choose the second
policy. So this decision-making process involves a tradeoff between immediate and
future expected free energy.

F. Simplicity-Complexity Tradeoff: Occam’s Razor

The Kullback-Leibler (KL) divergence term in the free energy formula (described above)
represents the cost of maintaining more complex models of the world. This complexity
cost term in the FEP introduces an important extension to the traditional ‘Bayesian
brain’ framework.

A complex model can potentially provide a more accurate representation of the world,
allowing for more precise predictions resulting in a reduction in surprise and
prediction error. However, we need models that are not only accurate but also
generalisable, interpretable, robust and internally consistent - principles that benefit
from simplicity:

e Generalisation: Simpler models are indeed often more generalisable. Overly
complex models that fit every detail of the training data can lead to overfitting,
where the model performs well on the training data but poorly on unseen or
future data. Simplicity helpsin capturing the essential features that are likely to
generalise to other contexts.

e Abstraction: Simplicity in models often corresponds to a higher level of
abstraction. By focusing on the essential features and ignoring unnecessary
details, simpler models can recognize common patterns and relationships
across different contexts. This abstraction is indeed vital for general
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intelligence, asitallows for the application of learned knowledge in various
situations.

e Robustness: Simpler models are typically more robust to noise, especially
when there is uncertainty in distinguishing between signal and noise. Complex
models may inadvertently fit the noise in the data, mistaking it for a genuine
pattern. Simpler models, by focusing on the essential features, are less likely to
be swayed by random fluctuations or noise in the data.

e Internal consistency: Complex models often have more parameters,
relationships, and dependencies. This increased complexity can lead to more
internal inconsistencies through conflicting assumptions, contradictory
relationships, or misalignment with sensory experience. And these
inconsistencies are more difficult to detect and resolve when models are more
complex.

Moreover, a more complex model requires more resources to build, maintain, and
update. These resources include energy, time, and cognitive processing capacity.
Therefore, from the standpoint of internal consistency and resource efficiency, a
simpler model may be preferable. An optimal internal model would have just the right
level of complexity needed to accurately represent the world and make reliable
predictions, while also being as simple as possible to conserve resources, adopting
Occam’s razor.

The need for Occam’s razor can be extended conceptually to policies in active
inference. Policies that involve a series of complex and uncertain actions may lead to a
higher overall divergence, and thus prediction error, due to the increased uncertainty
associated with their outcomes. The more complex the policy, the more potential
there is for unexpected outcomes, and thus the greater the divergence from the
agent's predictions under the policy.

G. Active Inference: Proactive & Reactive Control

One way of interpreting the distinction between free energy (F) and expected free
energy E(F) is that the inference to minimise Fcomes afterthe free energy is computed
in the case of F, and before the free energy is computed in the case of E(F).

Free energy minimisation (F) under the FEP can be seen as a kind of reactive control
process because it involves minimising discrepancies between our sensory input and
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our predictions about that inputin the present moment: it involves responding to the
present evidence to reduce surprise.

Expected free energy minimisation, on the other hand, is a type of proactive control
because it is about minimising the anticipated or expected surprise over future time
points. This is often associated with active inference or selecting actions (policies) that
are expected to lead to future sensory states that minimise surprise. In this sense, it
involves anticipating and acting to shape the future evidence to reduce surprise.

In terms of the traditional distinction between reactive and proactive control in
cognitive neuroscience, the former is reactive, and the latter is proactive.

B. FEP & The Life Sciences

According to the FEP, not only humans but all life forms are self-organised to minimise
surprisal in the environmental niche to maintain structural and functional integrity.

A. Informational and Thermodynamic Entropy Minimisation

Surprisal is an information-theoretic measure of the information content associated
with an event or outcome. Here we will use the term ‘surprise’ for surprisal.
‘Information’ refers to a reduction in uncertainty about the state of the world. Events
that are less predictable or more unusual have greater surprise, as they convey more
information than events that are more predictable or occur frequently. Information
entropyis a measure of the average surprise. High entropy implies high uncertainty
because outcomes are very unpredictable and therefore surprising on average. Low
entropy implies low uncertainty because outcomes are very predictable and therefore
not very surprising on average.

There is a deep connection between information entropy and thermodynamic entropy
that measures the degree of disorder or randomness in a physical system. Both
concepts of entropy have to do with uncertainty, unpredictability, and the dispersion
of a distribution - whether a distribution of microstates of a physical system (in the
case of thermodynamic entropy) or a probability distribution over outcomes (in the
case of information entropy). Moreover, if you assume that all microstatesin a physical
system are equally probable, the formula for thermodynamic entropy is identical to
the formula for information entropy.

15



B. Homeostasis & Metabolic Efficiency

The FEP bridges information theory and statistical physics by proposing that
organisms resist thermodynamic entropy by minimising free energy (F). Minimising F
reduces not only information entropy, but also physiological (thermodynamic)
entropy, since it maintains the organism in a limited set of high-probability,
low-entropy states. These states can be understood in terms of homeostasis - that is,
the maintenance of a constant internal environment in the body despite changes in
the external environment or the body's own activities which allow the cells, tissues
and organs, and organism to function at optimal metabolic efficiency. For example,
the body maintains an internal temperature of approximately 37°C because the
enzymes that catalyse our metabolic reactions work most efficiently at this
temperature. If our body temperature drops or rises too much, these enzymes will not
function as effectively, and metabolic processes are impaired.

This is a way of understanding homeostasis, as shown in the figure below.

Boundary of
all possible sensory &

physiological states
(improbable, high entropy,
low metabolic efficiency) |

Surprise

Free Energy (F)

Boundary of
homeostatic states

(predictable, low entropy,
high metabolic efficiency)

To use Friston’s example, a fish out of water would be in a surprising state and a fish
that frequently was out of water would have high entropy, far from its homeostatic
ranges that preserve its functional and structural integrity and metabolic efficiency.
Biological organismsin general must therefore minimise Fand the long-term average
of surprise to ensure that they maintain homeostasis and metabolic efficiency with
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both their sensory (informational) and physiological (thermodynamic) entropy
remaining low according to the FEP.

C. Adaptation & Evolution

Onthe Free Energy Principle, over ontogenetic (lifespan) and phylogenetic
(evolutionary) time scales, organisms become models of their
cognitive-environmental niche through the internal organisation of physiological
systems, nervous systems, DNA and genetic regulatory networks. These models allow
them to predict and adapt to their environment. For example, an animal with
memory-networks might learn to predict when and where food will be available
(external states) based on sensory observations (the time of day, seasonal
temperature, etc.). If this model is accurate it reduces the uncertainty or surprise
concerning finding food, and by reducing uncertainty and surprise can more
effectively maintain its energy balance and continue to survive and reproduce. At the
same time, these brain-based models drive behaviour that actively changes the
environment to make it more predictable - for example by caching food via active
inference, which in turn promotes adaptive fitness.

In this way, over different evolutionary and developmental timescales, organisms
embody their own generative models and cognition is fundamentally grounded in the
organism's adaptive interactions with its environment.

To summarise some key ideas:

e Minimisation of Free Energy as an Evolutionary Imperative: On the FEP
living organisms strive to minimise free energy or reduce uncertainty in their
sensory inputs via generative models. These may be embodied in DNA and
genetic regulatory networks, which underpins natural selection, where
organisms with traits that allow them to survive and reproduce in their
environments are more likely to pass on their genes to future generations.

e Prediction and Selection: The FEP involves the use of internal models to
predict sensory inputs and guide action. These models are continuously
updated based on prediction errors or surprise, in a way that could be seen as
analogous to natural selection: less accurate models (analogous to less fit
organisms) are discarded or updated, while more accurate models (analogous
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to morefit organisms) are kept and used to guide future predictions and
actions.

e Exploration - Exploitation Trade-off: According to the FEP, organisms must
balance exploitation (using existing models to minimise free energy) and
exploration (updating or generating new models in the face of surprise). This
aligns with natural selection’s balancing act between preserving successful
genetic variations and generating new variations for potential adaptation to
changing environments.

D. Internal-External Boundaries, Nesting & Autopoiesis

Organisms are dissipative systems far from thermodynamic equilibrium and require a
continuous input of energy to maintain their structure and function. They are also
autopoietic in the sense that they are autonomous, with sufficient internal processes
to produce and maintain themselves in structure and function. All such systems
maintain a boundary that separates their internal states from their external milieu.

“A cell stands out of a molecular soup by creating the boundaries that set it apart
from that which it is not. Metabolic processes within the cell determine these
boundaries. In this way the cell emerges as a figure out of a chemical
background. Should this process of self-production be interrupted, the cellular
components... gradually diffuse back into a molecular soup.” Varela, Maturana
& Uribe

According to the FEP, the boundary consists of sensory and active states shown here:

Agent : World
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The FEP posits that Markov blankets define the boundaries of such dissipative systems.
A Markov blanket is a concept from the field of probability theory and statistics and is
used in Bayesian networks (a type of statistical model) to describe the set of variables
that shield or insulate a given variable from the rest of the network. Extending on the
ideas discussed above, according to the FEP, it is Markov blankets that keep dissipative
systems removed from thermodynamic equilibrium.

The existence of a Markov blanket means external states are (in a statistical sense)
conditionally independent of internal states, and vice versa. Internal and external
states can only influence each other via sensory and active states. Ais conditionally
independent of B given C if, when C is known, knowing A provides no further
information about B. This maps onto the Markov blanket (C1-C5) for node A shown
here:

A9

%0

Once all the neighbouring variables for A are known, knowing the state of B provides
no additional information about the state of A. According to the FEP, the internal,
blanketed state (A) constitutes the model. The ‘children’ of the model (C4, C5) are the
active states that drive action through prediction error minimisation in active
inference. The sensory states are the ‘parents’ of the model (C1, C2), driving perceptual
inference. If the hidden causes (B) beyond the blanket are inferred accurately, the
system minimises free energy. External states (B) which are ‘hidden’ beyond the
Markov blanket thus cause sensory states (C1, C2), which influence, but are not
themselves influenced by, internal states (A), while internal states (A) cause active
states (C4, C5), which influence, but are not themselves influenced by, external states.
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Autonomous living systems tend to comprise not only the unified organism itself, but a
multiplicity of nested systems, each of which models its external world adaptively.
These can berealised by multiple hierarchically nested Markov blankets. Thus a living
system can be understood as composed of Markov blankets of Markov blankets —

reaching all the way down to cellular organelles and DNA and all the way up to whole
brain networks.

blankets all the way down
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Adapted from Friston, 2013

And the boundaries of such systems need not in principle be constrained by the
biological boundaries of a living organism. In principle, the FEP may be applied if
‘internal’ states are shared across interacting individuals with collective intentionality -
such as with a flock of birds or a human cultural group with shared cultural
infrastructure, goals and values. The relevant level of analysis in evolutionary theory

Global free energy minimisation on this account involves multiple nested generative
models in the hierarchical network, each accountable to the others, providing an
internally consistent representation of sensory causes at multiple levels of abstraction
over multiple time scales. This gives generative models in complex organisms
spatiotemporal depth, enabling the overall biological system to make inference over
recursively larger and larger scales of sensorimotor consequences.
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E. Allostasis & Adaptive Autonomy

Biological systems are homeostatic systems with dependencies over multiple time
scales. They are able to actively monitor and react to perturbations that challenge
homeostatic variable ranges which may go out of bounds by minimising the resulting
free energy - such as shivering when temperature falls. They are also able to predict
challenges to homeostatic variables in advance to maintain homeostasis, and
implement strategies to minimise expected free energy through active inference. The
term allostasis refers to the process by which the body maintains stability
(homeostasis) by anticipating and adapting to changes in the environment before they
occur. Allostasis can be considered as a kind of 'predictive regulation’ of the body's
internal environment, through expected free energy minimisation. It's about
preparing for the future, not just reacting to the present as in negative feedback based
homeostasis (also see section 4F on proactive and reactive active inference control
above).

Thus biological systems possess generative models with temporal depth, sampling
among different options and selecting the option that has the least (expected) free
energy or greatest expected evidence. In this way, living systems are able to ‘free’
themselves from reacting to proximal conditions by making inferences about
probabilistic future states over multiple scales. According to the FEP, this kind of
adaptive, future-directed active inferenceis what grounds an organism’s autonomy.
Living systems can transcend theirimmediate present state, and work towards
occupying future states with an expected free energy minimum.

And according to the FEP, adaptive autonomy depends on hierarchical generative
models with nested and multi-layered Markov blankets (section 5C). It is only with
multilayered independencies that living organisms can learn (within a lifetime) and
evolve (over multiple generations) generative models with temporal and spatial depth,
enabling the system to make inference over larger and larger scales of sensorimotor
consequences (Kirchoff et al., 2018).
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lll. Brain Energy Landscapes

The Free Energy Principle (FEP) has been extended and generalised in multiple ways since its
original formulation by Karl Friston in 2005. Below we review one constellation of potential
extensions.

The concept of an energy landscape is used to describe the different network states that the
brain can be in, and how ‘energetically attractive’ these states are. The most probable states
are those that the brain spontaneously adopts because they require less energy to maintain.
These are lower energy brain states in the sense that they are less metabolically costly,
requiring less oxygen and glucose consumption. In the context of the Free Energy Principle,
the brain is driven to minimise free energy (F). By minimising F, the brain is effectively
navigating the landscape of possible states to find those that are probable and low energy.

This concept is related to the idea of an attractor landscape in dynamical systems theory.
Under extended FEP, the ‘hills’ in such a landscape represent higher energy, low probability
states (repellors) while the ‘valleys’ (attractors) are states that are highly probable and low
energy. The brain is driven to seek out these low-energy states to minimise surprise or
prediction error. In this case, the depth of the valleys could be thought of as inversely related
to their free energy and metabolic energy cost. This kind of landscape is shown here:
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The extended FEP posits that the brain is inherently driven to navigate this landscapein a
way that minimises free energy and metabolic cost by transitioning from any starting point on
higher ground to a high-probability low energy state - an ‘attractor’. In this way, the brain over
the long term resists surprise and entropy and maintains homeostasis. These low energy
states are considered to be stable configurations of brain activity.

Surprise or prediction error results in more information to process which results in an
increased metabolic cost: the neural processing of information is energy consuming.
Additionally, there are energetic costs associated with the complexity of our generative
models: more complex representations require more energy to maintain themin a resting
state. So not only is the brain driven to stay within a range of easily accessible, high
probability psychological states that flow from its generative model, but also to reduce the
energetic cost of model encoding in neural networks.

The brain can thus be viewed as striving to balance the metabolic cost of neural computation
and physiological response with the need to reduce free energy by accurately predicting and
responding to its environment, consistent with F being a function of both prediction error and
the complexity of the generative model.

Shi Gu and colleagues (2018) have looked at how large-scale brain circuitry constrains states
of neuronal activity and transitions between those states, and how diverse cognitive systems
are optimised for differential contributions to integrated versus segregated function via
distinct patterns of energy utilisation.

They have revealed that the sensorimotor networks and networks involved in complex
cognitive functions such as attention, working memory, and cognitive control - the
fronto-parietal, salience, dorsal attention, and cingulo-opercular network - are associated
with more energetically costly states in the brain's energy landscape. These networks, when
actively engaged in processing complex information, require more energy to function. These
information-processing states are less probable, meaning they don't occur as frequently as
the more energy-efficient states associated with the default mode network (DMN) that is
active during rest.

Gu and colleagues highlight that (i) energy consumption and production varies by brain
region, (ii) sets of regions that show strong coherence in cognitive systems require high
amounts of oxygen and glucose consumption, (iii) regions with high levels of functional
connectivity consume high levels of energy (glucose) and require greater blood supply.
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When the frontoparietal and attention networks are in an efficient state with minimal energy,
they are more internally focused and have low between-system energy; that is, they are not
expending much energy in communicating with other networks. They may be considered
functionally isolated during low-energy states. There are, however, situations where these
networks - known for their network hub status - have a high level of energetically costly
communication with other networks. They are part of higher-order cognitive systems that
display flexible, adaptive activation rates, and have the capacity to be extensively connected
to other networks during complex cognitive processing.

The sensorimotor system, along with primary and secondary sensorimotor cortices in
somatosensory, visual, and auditory systems is part of a cluster with high between-system
energies when these are engaged in tasks that require working memory, attention and
cognitive control. In such low probability states, the brain shifts to state configurations with
higher energy expenditure due to the increased complexity of neural computations and
coordination required. Conversely, when the sensorimotor cluster is engaged in more
automatic or habitual tasks, they operate with relatively lower energy expenditure, possibly in
conjunction with the default mode network (DMN) that is active at rest.

The DMN has intermediate between-system energies. The DMN is generally associated with a
lower energy landscape because it is more active during resting states, which are
energetically more efficient for the brain. Within these lower energy states, the DMN has
intermediate between-system energies, reflectingits balanced role in internal processing and
interaction with other networks.

To summarise some key concepts reviewed above:

A. Attractor States

The idea that the brain seeks out low-energy, high-probability states (attractors) is central to
the energy landscape model. The brain's overall goal is to reach a state of minimum free
energy, where surprise or prediction error is reduced. This is an energy-efficient state, and it's
in these states that the brain may be understood to do most of its information processing
work.
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B. Metabolic Cost Tradeoff

The balance between reducing free energy and managing metabolic costs is an important
one. Neural computation, physiological response, and maintaining the complexity of our
generative models all require energy. The brain is always looking to strike a balance between
achieving a low-energy, high-probability state in terms of free energy reduction and the
energy costs of getting there. This underpins the complexity (accuracy) - simplicity (efficiency)
tradeoff in the Free Energy Principle.

C. Functional Connectivity

Functional connectivity refers to the statistical interdependencies or correlations between
different regions of the brain. These connections can be mapped outin networks of areas that
work together and different cognitive tasks and states (including rest) activate different
networks within the brain.

In terms of the energy landscape picture, each of these functional networks can be seen as
located in a certain ‘valley’ or ‘peak’ on the landscape, depending on how much energy they
require to be maintained and how frequently they are activated. Complex cognitive tasks that
require top-down, effortful cognitive control, such as decision making and problem solving
engage networks like the frontoparietal network (FPN) and cingulo-opercular network (CON).
During these tasks, this network processes more information (and thus free energy) and
coordinates activity among numerous interconnected regions to process it, which increases
the overall metabolic cost in glucose & oxygen consumption. In the energy landscape analogy,
these active states would be represented as peaks or high-energy areas.

Conversely, the default mode network (DMN) is more active during resting states and
spontaneous, non-directed cognition, and is associated with lower-energy ‘valley’ states on
the energy landscape which are less metabolically costly.

D. Energy Landscapes and Cognition

The energy landscape framework provides a useful perspective on brain function. It links
physiological aspects such as metabolism and oxygen and glucose consumption, with
cognitive processes and states. Different network states, and transitions between them,
represent an ongoing balance between energy conservation and the need to process and
respond to free energy and information which is metabolically costly.
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IV. Extended Evolutionary Synthesis (EES)

Adaptive evolution involves selection operating on heritable variation resulting in changing
frequencies of variantsin a population over time. The classical Modern Synthesis (MS) focuses
on genetic variation and natural selection resulting in changes in gene frequenciesin a
population over time, while the Extended Evolutionary Synthesis (EES) expands this view to
include non-genetic forms of heritable variation (like epigenetic, cultural, and ecological
inheritance) and additional selection mechanisms (like developmental bias and niche
construction). The EES was a response to advances in developmental biology, genomics and
ecology.

Drawing from a review by Kevin Laland and colleagues (2015), mechanisms of the Extended
Evolutionary Synthesis (EES) and how they compare to the classical Modern Synthesis (MS)
are outlined below.

A. Generation of Novel Variants (Phenotypic & Genotypic Diversity)

Modern Synthesis: Random Variants

e Random genetic variation. The Modern Synthesis proposes that random processes of
mutation and recombination are the primary sources of the novel genetic variation
that natural selection acts upon. Changes in an organism's genetic material do not
have any inherent directionality towardsincreasing the organism'’s fitness. Example: A
random mutation might occur in a gene that affects human hair colour. This mutation
is a random event, not influenced by whether a change in hair colour might make the
individual more or less attractive to potential partners. The new hair colour is a novel
variant that can then be acted upon by natural selection.

ESS: Directed Variants

e Developmental processes. These include epigenetic effects, regulation of gene
expression, and construction of internal (hormone levels, nutrient availability, etc) and
external (temperature, light levels, food availability, etc) developmental environments.
Example: During human development, the nutrition a foetus receives in the womb can
influence its growth and development, leading to phenotypic variation.

e Developmental bias. Developmental systems facilitate well-integrated, functional
phenotypic responses to mutation or environmental induction rather than random
ones. Example: The brain’s development is tightly regulated by a host of genetic and
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environmental factors, and as a result not all changes to the brain's structure and
function are equally likely to occur. A mutation that slightly alters the timing of
synaptic pruning might lead to subtle changes in brain function, while a mutation that
disrupts the existing developmental process is likely to be harmful and therefore
unlikely to persist in a population.

e Niche construction. Organisms modify their own and each other's niches, which can
affect both the generation of novel variants. Example: The development of agriculture
led to changes in diet that are thought to have driven the evolution of genetic
adaptations to digesting certain types of food, such as lactose tolerance in populations
that domesticated dairy animals.

e Environmental induction. Changes in the environment can lead to specific
phenotypic responses in organisms, generating non-random variation. This includes
phenotypic plasticity, where a single genotype can produce different phenotypes
depending on the environment. Example: A high-altitude environment induces
specific phenotypic responsesin humans, such asincreased red blood cell production
and changes in haemoglobin structure, to cope with low oxygen levels. This is a form
of phenotypic plasticity, where a single genotype can produce different phenotypes
depending on the environment. Over many generations, these kinds of
environmentally induced changes can lead to genetic changes if individuals with
genotypes that allow for more effective phenotypic responses to high altitudes have
higher survival or reproductive success. This process is known as genetic
accommodation. In this way, phenotypic plasticity can guide and shape the course of
genetic evolution.

FEP & Variants

The FEP posits that adaptive, biological systems minimise surprise or prediction error (free
energy) through the continual updating of its internal models to better predict sensory inputs.
This process involves an interplay between exploiting known, predictable states (maintaining
existing models) and exploring new, uncertain states (updating or generating new models) - a
trade-off known as exploitation vs. exploration.

In terms of generating novel variants, the FEP suggests that the brain will sometimes favour
exploration over exploitation for long-term free energy minimisation. In cognitive terms, this
could be the generation of novel ideas or creative problem-solving approaches that provide
new ways of interpreting and interacting with the world. These novel cognitive or symbolic

variants then lead to changes in behaviour or modifications of the environment (EES's niche
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construction) thatimpact an individual or groups evolutionary trajectory - akin to EES's
environmental induction.

In addition, just as the EES recognises the role of environmental and developmental factorsin
generating phenotypic variation, the FEP recognizes that changes in the environment and an
organism's developmental history will channel generative models, leading to variationin its
behaviour, phenotype and ecology.

Like the EES, the FEP emphasises the importance of not just genetic, but also epigenetic,
phenotypic, and environmental factors in generating variation which then contributes to the.
energy landscapes that organisms navigate in their pursuit of minimising long-term free
energy and maximising evidence.

B. Selection Mechanisms

Modern Synthesis: One-Way Causation

e Natural selection. This is a unidirectional process where the environment shapes the
organism, but not vice versa. Traits that enhance survival and reproduction become
more common in successive generations of a population, driven by the differential
reproductive success of individuals with different phenotypes. Example: The evolution
of lactose tolerance in some human populations is often cited as an example of natural
selection. In populations that historically relied on dairy farming, individuals who
could digest lactose into adulthood had a nutritional advantage and were more likely
to survive and reproduce, leading to an increase in the frequency of lactose tolerance
in these populations.

EES: Reciprocal Causation

Organisms both shape and are shaped by their environments, creating a feedback loop that
can drive evolution. This overarching principle of two-way causation includes mechanisms
such as:

e Developmental bias. Some phenotypic changes are more likely to occur than others
due to the way organisms develop. This can influence the direction and pace of
evolution. Example: Human brain development shows evidence of developmental bias
as increases in brain size and complexity have occurred repeatedly in human
evolution, suggesting that our developmental processes make these changes more
likely.
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e Niche construction. Organisms modify their own and each other's environments,
which can affect the selection pressures they face and thus influence evolution.
Example: Humans create complex social structures, technology, and modifications to
the environment that greatly influences the selection pressures we face.

e Levels of selection. The ESS adopts an organism-centred perspective rather than a
gene-centric one, while also recognising that selection can occur at multiple levels of
biological organisation, from genes to individuals to groups or populations, such as a
cultural niche shared by multiple individuals. Example: Cultural practices shared by a
group of humans can influence the survival and reproduction of the group as a whole,
potentially leading to the evolution of new cultural norms or behaviours.

FEP & Selection

We have reviewed an FEP interpretation of natural selection above.

In the FEP framework, organisms modify their environments to reduce free energy or surprise,
aligning with the concept of niche construction in evolutionary biology, where organisms
alter their environments in ways that can affect natural selection pressures.

And in line with the EES's assertion of organisms moulding and being moulded by their
environment (reciprocal causation), the FEP emphasises the role of active inference in free
energy minimisation where organisms act to align their environments with their internal
models or predictions, thereby reducing surprise.

Within the energy landscapes model, organisms will also modify their environments (niche
construction) to forge energetically efficient paths, consistent with probability landscape
conceptions.

C. Inheritance Mechanisms

Modern Synthesis

e Geneticinheritance. Genetic inheritance: This is the process by which traits are
passed from parents to offspring through genes - the unit of selection. According to the
Modern Synthesis, genes are the only mechanism of inheritance, and traits acquired
during an organism's lifetime are not inherited. Example: Eye colour in humans is
primarily determined by genetics. An individual inherits genes from their parents that
determine their eye colour.
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EES & Inheritance

e Inclusiveinheritance: Thisis theidea thatinheritance encompasses more than just
genes. According to the EES, traits can also be passed on through mechanisms like
epigenetic changes (modifications to gene expression), behavioural and cultural
transmission (learning from others), and ecological inheritance (changes to the
environment caused by previous generations). These can in turn shape genetic
evolution by either of the following mechanisms:

o Shapingselection pressures: For example, the development of agriculture led
to changes in diet that could have influenced the evolution of genes related to
digestion and nutrient absorption.

o Cultural transmission can lead to genetic changes over time: Thisis a
process known as gene-culture coevolution. For example, in societies where
reading and writing are important skills, there could be selection for genetic
traits that facilitate these abilities, such as better visual acuity or fine motor
control, thus changing the frequency of certain genetic traits over time.

FEP & Inheritance

Non-genetic forms of inheritance, such as epigenetic, cultural, and ecological inheritance,
have a strong role in the EES in addition to genetic inheritance.

According to the FEP, an organism is constantly learning and updating its model of the world,
which includes inherited knowledge. If this information is passed down through generations,
it can shape the ways in which future generations predict and interact with the environment,
whether it'sin the form of learned behaviours, ideas, cultural norms or technological tools.

When viewed in terms of an energy landscape, these inherited traits influence the organism's
position and the possible paths it can take. Whether these traits are genetic, epigenetic,
behavioural or cultural, they all contribute to the energy landscape and can play a role in
shaping an organism's evolutionary trajectory.

D. Macroevolution

Modern Synthesis

e Gradualism. Macroevolution is largely a result of gradual changes that accumulate
over long periods of time. This is often referred to as gradualism, in which phenotypic
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transitions occur through multiple small steps, leading to gradual evolutionary
change. This perspective is based on the idea that evolution via mutations of large
effectsis unlikely because such mutations have disruptive pleiotropic effects - that is,
maladaptive effects on multiple unrelated traits.

EES & Macroevolution

e Variable rates of change. The ESS posits that variants of large effect are possible,
which can lead to rapid evolutionary change. This theory allows for ‘saltation’ or
‘punctuated equilibrium,” where significant evolutionary changes can occur rapidly,
via either of the following mechanisms:

o Mutations in major regulatory control genes expressed in compartment-,
tissue-, or module-specific manner. Compartment- specific expression might
refer to a regulatory gene thatis active in a specific compartment of a cell, such
as the nucleus, where it controls the expression of genes within that
compartment. Tissue-specific expression might refer to a regulatory gene that
is only active in heart tissue. Module-specific expression could refer to a
regulatory gene that is active in a specific module of the brain, such as a
functional network.

o Developmental processes respond to environmental challenges with changes
in coordinated suites of traits, or through nonlinear threshold effects where a
small change in an environmental factor or a genetic change can lead to a
sudden and significant change in an organism's phenotype or behaviour. These
developmental processes could be responses to selective pressures from niche
construction and ecological inheritance.

FEP & Macro-Evolution

EES allows for sudden shifts in evolutionary rates and accepts the hypothesis of ‘punctuated
equilibrium," wherein marked evolutionary changes can occur quickly.

The extended FEP interprets this as the organism rapidly changing its predictive models -
either in response to drastic changes in sensory input or through internal re-organisation of
generative models. .In energy landscape terms, these sudden changes can signify an
organism moving rapidly to a new ‘attractor’ energy minimum, potentially due to significant
environmental alterations or major mutations.
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E. Multiplier Effects & The EES

The gene-environment multiplier effect (Dickens and Flynn, 2001) describes how genes and
environment can interact in a way that amplifies the effect of each on the phenotype of an
individual such as cognitive ability. An individual with a small genetic advantage in
intelligence can influence the environments they seek out or create for themselves, such as
advanced educational opportunities or intellectually challenging jobs which in turn enhance
their cognitive abilities. Enriched environments may also upregulate genes associated with
cognitive function, further enhancing the person's intellectual abilities. These interactions
can amplify over time. Small initial differences in genetic predisposition can lead to
increasingly divergent environments, which in turn lead to increasingly divergent gene
expression and phenotypic outcomes. This process can lead to a positive feedback loop,
where genetic predispositions and environmental influences mutually reinforce each other,
leading to substantial phenotypic differences over time. Multiplier effects align with the EES
in the following ways:

e Phenotypic Plasticity and Environmental Induction: A single genotype can produce
different phenotypes depending on the environment. This is a form of environmental
induction, where changes in the environment - such as intellectual enrichment - can
lead to specific phenotypic expressions in individuals, such as stronger cognitive
abilities.

e Reciprocal Causation: The notion thatindividuals can seek out environments that are
favourable for their intellectual development is an example of reciprocal causation,
where organisms not only are shaped by their environments, but also shape their
environments.

e Inclusive Inheritance: The multiplier effects resulting from small modifications in
biological and social environments is a type of non-genetic, cultural inheritance. If
these modifications lead to changes in behaviour or cognitive abilities that are then
passed on to subsequent generations (through learning or social influence), this could
contribute to evolutionary change.

e Niche Construction: The process of individuals seeking out and creating favourable
environments for their intellectual development is a form of niche construction, where
organisms modify their own and each other's environments, which can in turn affect
the selection pressures they face.
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FEP & Multiplier Effects

The gene-environment multiplier effect — the mutual reinforcement of genetic
predispositions and environmental influences — is compatible with the FEP through active
inference and niche construction.

Multiplier effects in extended FEP terms, could be understood as driving increasing capacity
forinference and complexity and accuracy of generative models, and expanding the space of
metabolic energy-minimising trajectories through the organism’s energy landscape -
extending out to its environmental niche.

F.Summary

In conclusion, the EES, FEP, and energy landscape concept share a common emphasis on the
reciprocal interactions between organisms and their environments in determining evolution
and behaviour. They all underline the importance of non-genetic forms of inheritance and the
capacity of organisms to modify their environments, as well as the influence of environmental
alterations on the development and evolution of organisms. These frameworks complement
and reinforce each other in their understanding of biological systems, providing a more
nuanced and holistic view of the dynamics of life.
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V. Complex System Entropy & Syntropy

The concepts of Entropy and Syntropy (or Negentropy) are found in various fields of research
including physics, information theory, complex systems and network theory, ecology,
cognitive neuroscience and Al. Here we use an interdisciplinary approach to situate the
constructs in complex system extensions of the FEP.

A. Entropy (H) in Information Theory

Flexibility Under Uncertainty

In information theory, entropy is a measure of the unpredictability or randomness of a
system. In extensions of the FEP, this uncertainty could provide the cognitive 'space’ for the
agent to explore novel strategies and solutions, enhancing adaptability.

Resource Allocation

Just as entropy in information theory quantifies the ‘space’ available for encoding
information, Hin an extended FEP represents the cognitive space or capacity available for
adaptive responses. This cognitive space allows for the exploration of new strategies and
solutions.

Redundancy and Robustness

In information theory, entropy can also relate to the redundancy in a system. Similarly, a high
Hin an extended FEP model can imply a level of cognitive redundancy that makes the system
more robust against errors or unexpected changes.

B. Hin Thermodynamics & Complex Systems

Energy Dissipation & Efficiency

In thermodynamics, entropy is related to the dispersal of energy. In an extended FEP, a high H
can be seen as a complex system's ability to dissipate neural network energy costs across
low-energy landscape pathways, allowing for metabolic efficiency. A complex system with
high H can use its available energy resources efficiently for adaptation, similar to how
thermodynamic systems with high entropy are often at equilibrium and thus energy-efficient.
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C. Hin the ESS

The concept of entropy in an extended FEP aligns with the EES emphasis on phenotypic
plasticity, where a single genotype can produce different phenotypes depending on
environmental conditions. A high Himplies an organism has a greater capacity for phenotypic
plasticity. For intelligent systems, this adaptability could be a form of cognitive plasticity,
where the organism can flexibly adjust its cognitive models in response to environmental
changes, akin to how phenotypic plasticity allows for different physical traits.

D. Syntropy (J) in Information Theory

Syntropy (negentropy) implies a form of coherence or ‘useful information’. In information
theory, negentropy measures how far a distribution is from a Gaussian distribution, which is
considered the most disordered or random among distributions with the same mean and
variance.

Negentropy (J) in information theory is a tool or principle that helps you design more
effective, better optimised algorithms or models for processing that data. Negentropy can be
used for the inference process itself, as well as the encoding of information in the model, and
we can map this distinction onto the Free Energy Principle distinction between the inference
processes (active or perceptual) and the resulting generative model.

Inference

e Anomaly Detection: In statistical inference and machine learning, negentropy can be
used to detect anomalies or outliers. This is related to prediction error and is akin to
the brain's ability to detect something unusual in the environment, which may require
immediate attention or action.

e Feature Extraction: Negentropy can help identify non-Gaussian features in the data -
i.e. which features in the data are most meaningful. This helps in the inferential
process where the brain tries to make sense of sensory data by focusing on the most
meaningful features, as it interprets incoming sensory information.

e Noise Reduction: Negentropy can be used to distinguish between the useful
non-Gaussian signals and Gaussian noise. By focusing on the components with higher
negentropy, one can filter out noise and improve the quality of the signal. This could
be considered an active inferential process where the brain filters out irrelevant or
distracting sensory information to focus on what's important.
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Modelling

e Independent Component Analysis (ICA): Negentropy is used to separate mixed
signals into their independent components. This is an algorithmic optimization to
ensure that the separated signals are asindependent as possible. In the context of
FEP, this could be akin to the generative model that the brain uses to separate and
interpret different sources of sensory information.

e Data Compression: Negentropy can also be used in data compression algorithms. A
distribution with higher negentropy is farther from a Gaussian distribution and thus
contains more structure that can be exploited to compress the data more efficiently.
This can be seen as part of the generative model where the brain efficiently encodes
information for storage and future use. The brain has to balance the complexity and
efficiency of its internal models, as with data compression algorithms.

e Optimal Coding: In neural networks and machine learning, the concept of negentropy
is related to the idea of sparse coding, where the goal is to represent data using the
fewest number of active neurons or basis functions. A higher negentropy in the coding
implies that the representation captures more essential features of the data.In the
context of FEP, the brain uses sparse coding to efficiently represent the causes of
sensory inputs. This is about how the brain's model is structured to best explain the
sensory data it receives.

Ahigher capacity for syntropy in a model indicates a greater ability to extract meaningful
patterns from sensory data and adapt effectively. While negentropy is a tool for optimisation—
making a given process as efficient as possible—syntropy focuses on the capacity for signal
processing - the goal of negentropy optimisation.

E. Jin Thermodynamics & Complex Systems

Syntropy & Energy Cost

Increasing syntropy in a neural system generally requires more metabolic energy to build
more complex information processing networks that effectively model the world. Thereis a
thermodynamic cost of maintaining a complex, adaptive system, far from thermodynamic
equilibrium. Moreover, complex cognitive tasks that require high levels of syntropy (like
problem-solving or planning) often come with a metabolic processing cost. This aligns with
theidea that fluid intelligence tasks, which are effortful, also require metabolic expenditure.
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Syntropy & Energy Availability

Both syntropy and Gibbs Free Energy can be thought of as resources that a system has at its
disposal. Gibbs Free Energy is the useful energy available for doing work in physical systems,
while syntropy represents the cognitive resources available for adapting to new situations or
solving problems in cognitive systems. A system with more syntropy has more metabolic
capacity and can do more cognitive work.

Syntropy & Energy Efficiency

An intelligent system with high syntropy will be more efficient at using its available free
energy. In other words, it will require less energy to perform the same amount of work, due to
the optimised information processing as described above. The FEP also captures Occam's
razor by penalising models that are more complex than necessary. A system with high
syntropy would be adept at constructing models that are as simple as possible but as
complex as necessary, thereby efficiently using its Gibbs free energy.

In summary, having more syntropy implies a greater store and more efficient use of Gibbs
Free Energy (which should be distinguished from the ‘free energy’ in the FEP. Developing
more syntropy in a complex, dissipative system also implies more energy is needed for its
development, maintenance and operation, especially during complex cognitive tasks.

F. Jin the ESS

Syntropy in an extended FEP relates to core concepts of the EES:

e Constructive Development: Syntropy aligns well with the EES concept of constructive
development, where organisms actively shape their development through interactions
with their environment. The ability to anticipate, problem-solve, and adapt to future
challenges (syntropy) can be seen as a product of constructive developmental
processes.

e Reciprocal Causation: Syntropy also fitsinto the EES principle of reciprocal causation,
where proximate causes (like cognitive abilities) can become ultimate causes that
influence evolutionary trajectories.

e Niche construction: Syntropy involves the ability to anticipate, problem-solve, and
adapt for future challenges, which are all essential skills for niche construction. High
syntropy supports the creation of technologies, cultural practices, institutions, and
systems.
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e Phenotypic evolution: According to the EES, evolutionary theory is a theory of
phenotypic evolution, defined as transgenerational change in the distribution of
heritable traits of a population. Syntropy is a high-level information processing
phenotype that enhancesan organism's ability to generate novel, adaptive responses
to environmental challenges, extending to technologies and social systems. Such
phenotypes can be inherited.

e Goal directed deviation from population templates: Building on the idea of
negentropy as a measure of ‘distance to normality,’ the ‘species template’ could serve
as a baseline or normal population model. Developmental biases, niche construction,
multiplier effects, and environmental induction could be seen as forces that push an
individual organism's generative model away from this species template, thereby
increasing its syntropy. Just as energy is required to create order in physical systems,
energy inputin the form of food, social interaction, learning, etc., could be required to
create the unique traits and behaviours that make an individual's generative model
more complex and less ‘normal’. In the context of a, developmental biases could
shape syntropy, making an individual particularly adept at certain kinds of
problem-solving.

Environmental Induction & Niche Construction

The relationship between entropy (H) and syntropy (J) can be likened to the EES
concepts of environmental induction and niche construction. While syntropy drives
the ability to construct niches, entropy measures the adaptability gained from these
constructed niches. An organism with high syntropy would be adept at niche
construction, creating cognitive or physical environments that are conducive to its
own adaptability. Once these niches are constructed, an organism with high entropy
would be better equipped to exploit these niches for various adaptive purposes. This
aligns with the EES concept of organisms shaping their own evolutionary pathways
through niche construction. Forinstance, by using syntropy to construct a wider range
of tools and systems in a 'cognitive niche,' the organism gains more opportunities to
reduce free energy through perceptual or active inference or to creatively explore new
possibilities. H then serves as a measure of how well the organism can utilise these
constructed niches for adaptability and evolution.

Biassing Causes

In the EES, biassing causes such as developmental bias and niche construction can
guide or constrain the direction of evolution. While syntropy (J) can serve as a biassing
cause in the construction of adaptive niches, high entropy (H) acts as a biassing cause

38



by determining how effectively these niches are utilised. A high H can function as a
form of ‘cognitive biassing,” where the organism's cognitive flexibility allows it to more
effectively exploit the niches that its syntropy has enabled it to construct. This
adaptability could influence the direction of both cognitive and biological evolution.
For example, an organism with high syntropy might be more likely to construct
complex tools or social systems, while an organism with high entropy would be better
at adapting to the use of these tools or systems. This dual capacity would make it more
likely for these advantageous traits to be passed onto future generations.

VI. Cognitive Neuroscience
& Network Theory

Brain Network Modularity

Computational neuroscience of brain function has converged on some key ideas which are

outlined below.

Constraints and Optimisation

Both neuraland computational systems face constraints between topological
complexity of network connectivity and physical wiring cost.

Optimising modularity can maximise topological complexity while adhering to cost
constraints of physical embedding.

Integration and Segregation

Thereis evidence that the human brain uses modular network architectures balancing
integration and segregation. This maximises the functional complexity in the brain
while minimising connection costs.

Modularity facilitates specialisation of function in densely connected modules with
sparse inter-modular links which are crucial for global integration and communication.

Roles of Connector Hubs

Connector hubs link modules and promote global efficiency.

e Provincial hubs are crucial within modules for specialised, localised processing.
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e Both connector and provincial hubs are proposed to play key roles in maintaining an
optimal modular architecture by tuning connectivity within and between
communities.

e ‘Rich Clubs’ are a set of highly interconnected hubs that facilitate efficient
communication across the entire network. In the context of the metastability ©
function, key nodes of the Salience Network as well as other prefrontal areas actas a
rich club, controlling boundary regions and coordinating multiple modules and
networks.

Brain Network Modularity & Small World Topologies

Small-World Properties

e Modular networks can exhibit small-world properties if they have some inter-modular
connections that provide shortcuts between modules.

Role of Connector Hubs in Small-World Networks

e The presence of connector hubs, which link different modules, enables modular
networks to achieve small-world organisation.

Functional Specialisation and Global Integration

e Modularity provides the underlying architecture for functionally specialised
processing. But the presence of connector hubs and a small-world topology allows
globally integrated processing and information flow across the modular structure.

Brain Network Criticality & Self-Organised Criticality (SOC)

Computational neuroscience research also supports the following claims concerning brain
network criticality:

Near Criticality States

e Functional brain networks operate near a critical point between order and
randomness.

e Theoretically, this fact has been related to the theory of self-organised criticality: The
SOC construct originates from the field of statistical physics and was first introduced
by Per Bak, Chao Tang, and Kurt Wiesenfeld in 1987. The idea was to explain how
complex systems can spontaneously evolve to a critical point, poised at the edge of



chaos and order. At this critical state, the system exhibits a high degree of complexity,
and small changes can lead to cascading effects with consequences of all sizes—often
described by a power-law distribution.

Complex Dynamics and Information Processing

Operating at criticality allows complex dynamics like scale free avalanches and
long-range correlations that support optimal information processing.

Scale-Free Dynamics: Criticality is often associated with power-law distributions and
scale-free dynamics, allowing for a wide range of dynamic behaviours.

Role in Modular Networks

Modular networks tuned to an optimal balance between segregation and integration
may underpin how the brain achieves a critical state.

Near-critical dynamics occur in modular networks with an intermediate level of
inter-modular connections, and this small-world architecture can generate critical
dynamics across both short and long time scales.

At the critical point, the system is optimised for maximal information transfer and
computational capability.

Resilience & Resource Efficiency

Systems at criticality are robust to perturbations, meaning they can adapt to a wide
range of conditions without drastically altering their behaviour.

Critical systems are often more energy-efficient, balancing the cost of neural
computation and communication.

Meta-stability

Definition

Meta-stability is a dynamic computational regime where the brain's network states are
neither fully stable nor chaotic. This transient nature allows for a rich exploration of
state-space, enabling the system to adapt to a wide range of tasks and environmental
conditions.

Relation to criticality
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e While both meta-stability and criticality involve the brain operating near a point of
optimal computational capability, they emphasise different aspects of this balance.
Criticality focuses on scale-free dynamics and optimal information transfer, whereas
meta-stability highlights the system's ability to rapidly reconfigure its network states
for task-specific demands.

Role in Modularity

e In modular networks, meta-stability emerges from an optimal balance between
segregation and integration. It provides a computational mechanism for coordinating
activity across spatial and temporal scales, allowing for both local specialisation and
global integration.

Functional Implications

e Meta-stability facilitates quick and flexible transitions between different functional
states. This s crucial for tasks requiring multi-modal integration or rapid adaptation to
new information. It also provides a basis for balancing the trade-off between
exploration and exploitation in decision-making and learning.

Neural Network Architectures & General Intelligence (g)

Modular Organisation and Intelligence

e Individual differencesin intelligence are associated with differencesin the modular
organisation of functional brain networks.

e Specific mental abilities emerge from modular network communities that enable
specialised, segregated information processing.

Small-World Topology and Broad Abilities

e Broad abilities like crystallised and fluid intelligence depend on the overall
small-world topology and modularity tuning that balances segregation and
integration.

e The capacity to transition between network states underlies general intelligence and
relies on both provincial and connector hubs.
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Dynamic Reconfiguration and General Intelligence

Dynamic reconfiguration of this modular small-world network is critical for general
intelligence.

Modularity tuning may be a key mechanism of general intelligence, allowing the brain
to achieve and maintain near-critical dynamics that support efficient information
processing and complex neural computations.

Specialized Regions and Their Roles

In more intelligent individuals, the Anterior Insula (Al), part of the Salience Network,
shows higher between-module connectivity and is optimised for integrating and
propagating information across different modules.

In contrast, the Medial Superior Frontal Gyrus (SFG) and Temporo-Parietal Junction
(TPJ), linked to the default mode network (DMN), show higher within-module
connectivity. These regions may help to reduce the influence of potentially interfering
information on goal-directed processing.

Criticality & Metastability and Fluid Intelligence

Research suggests that individuals with higher fluid intelligence scores exhibit neural
dynamics that are closer to a state of criticality. The critical dynamics associated with
higher fluid intelligence are mostly observed in the prefrontal cortex and inferior
parietal cortex.

There is an association between maximal synchronisation entropy and individual
variability in scale-free avalanche activity in a state of near criticality. This is a measure
of the complexity and flexibility of neural architecture, linked to fluid intelligence and
working memory.

High resting state metastability in cognitive control networks (frontoparietal and
dorsal attention) playsanimportantrolein general intelligence across all tasks, and it
is increased during task performance.

Efficiency and Flexibility

e The efficiency with which an individual's brain can switch from a restingto a

task-based configuration correlates with intelligence. This could be interpreted as a
measure of the system's ability to balance stability and flexibility, which is central to
the concept of metastability.
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Network Control Theory (NCT)

NCT is a branch of control theory that extends classical control theory to complex networks.

Control theory is a multidisciplinary area of engineering and mathematics that deals with the

behaviour of dynamical systems and how their behaviour can be modified by the use of

feedback. In the context of brain networks, Network Control Theory provides a framework for

understanding how the structure of the network (i.e., how neurons or brain regions are
connected to each other) can influence its dynamics (i.e., how signals or information flows
through the network).

Key NCT Concepts Applied to Brain Networks

Average Controllability: This measures the ease with which a node (or brain region)
can steer the system into many easily reachable states. In the article, regions with high
average controllability are often densely connected hubs.

Modal Controllability: This measures how a node can move the system to
difficult-to-reach states. In the context of the brain, these are often weakly connected
areas that are crucial for complex cognitive tasks.

Boundary Controllability: This refers to the ability of a node to facilitate the
integration or segregation of different modules or communities within the network. In
the brain, these are often areas that lie at the boundary between different functional
communities.

Research applying Network Control Theory to the study of brain networks has shown:

Default Mode Network: Brain areas with high average controllability are those that
can move the brain to many easily reachable states. These regions are often densely
connected hubs, particularly in the default mode network (DMN).

Frontoparietal Networks: Brain areas with high modal controllability are important
for switching the brain between functions that require significant cognitive effort.
These are usually weakly connected and are often found in cognitive control systems
like the frontoparietal (and cingulo-opercular) networks.

Salience & Attention Control Networks: Brain areas with high boundary
controllability are important for integrating or segregating information across different
cognitive processes. These are particularly enriched in nodes of the Salience Network
(SN) and dorsal and ventral attention control networks. Regions include the anterior
cingulate, rostral middle frontal, lateral orbitofrontal, frontal pole, medial
orbitofrontal, and superior frontal areas. The SN, with key nodes in the anterior insula
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and anterior cingulate, has rich connections with these boundary control areas and
could serve as a central boundary control hub. It plays a crucial role in detecting and
orienting attention, is known for its role in switching between the DMN and
fronto-parietal networks, and is well-positioned to integrate or segregate information
from different networks, a hallmark of boundary control.

Whole Brain Functional Networks

We can hypothesise the following relationships between the FPN, DMN, salience network and
different network architectures:

Frontoparietal Network (FPN)

e TheFPN (and its subnetworks) is critical for fluid intelligence and adaptive problem
solving. The FPN is thought to underlie the ability to transition between network
states, enabling access to difficult-to-reach states that support cognitive flexibility.

e TheFPNisamongthe most costly in terms of metabolic energy usage. This aligns with
the proposed role of the FPN in cognitively demanding tasks requiring transitions
between network states.

e TheFPN contains a high proportion of connector hubs, which facilitate transitions
between network states and cognitive flexibility.

e Connector hubsinthe FPN could link to diverse brain modules to enable global
information integration.

e Provincial hubs may also facilitate within-module computational processes during
complex cognition.

Default Mode Network (DMN)

e TheDMN is associated with crystallised intelligence and accessing
knowledge/experience through easy-to-reach network states. The DMN contributes to
mutual interactions between cognitive processes that support crystallised abilities.

e |nassociation with sensori-motor and memory networks, the DMN accesses provincial
hubs to facilitate within-module processing and memory consolidation & retrieval.

e Ahighly modular architecture optimises the DMN for memory and automation.

e Connector hubs may link DMN modules to the FPN and sensori-motor networks when
coordination is needed.
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Salience Network (SN)

The SN is specialised in detecting and filtering salient stimuli, thus playing a pivotal
role in determining what information is relevant and should be attended to. Through
its rich club of densely interconnected hubs, the SN can rapidly relay signals between
the FPN and DMN, effectively coordinating these networks based on the salience
processing.

When integrated with prefrontal areas, the SN may form the neural substrate for a
metastability function, dynamically adapt the balance between the FPN, DMN,
memory and sensori-motor networks, depending on the context. For example, it could
prioritise the FPN during problem-solving tasks and the DMN during introspective or
memory-based tasks.

The SN is central in the rich club of densely interconnected hubs for global
communication and connector hubs in this rich club can rapidly relay signals between
other control networks.
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